
Copyright 1996 by George Schussel 6:51 PM 3/10/2005 Page 1

Client/Server, from dBASE to JAVA: Is it Over, or Just Beginning?
by George Schussel

It’s the purpose of this article to explain how the “Client/Server” architecture is really a
fundamental enabling approach that provides the most flexible framework for using new
technologies like the World Wide Web, as they come along. The old paradigm of host centric,
time shared computing has given way to a new client/server approach, which is message based
and modular. The examples below show how most new technologies can be viewed as simply
different implementation strategies built on a client/server foundation.

Even though most people use the term “client/server” when talking about group computing with
PC’s on networks, PC network computing evolved before the client/server model started gaining

acceptance in the late 1980’s. These first PC
networks were based on the file sharing
metaphor illustrated in the figure entitled FILE
SERVER. In file sharing, the server simply
downloads or transfers files from the shared
location to your desktop where the logic and
data for the job run in their entirety. This
approach was popularized mostly by Xbase
style products (dBASE, FoxPro and Clipper).
File sharing is simple and works as long as
shared usage is low, update contention is
very low, and the volume of data to be
transferred is low compared with LAN
capacity.

As PC LAN computing moved into the 90’s two megatrends provided the impetus for client/server
computing. The first was that as first generation PC LAN applications and their users both grew,
the capacity of file sharing was strained. Multi-user Xbase technology can provide satisfactory
performance for a few up to maybe a dozen simultaneous users of a shared file, but it’s very rare
to find a successful implementation of this approach beyond that point. The second change was
the emergence and then dominance of the GUI metaphor on the desktop. Very soon GUI
presentation formats, led by Windows and Mac, became mandatory for presenting information.
The requirement for GUI displays meant that traditional mini or mainframe applications with their
terminal displays soon looked hopelessly out of date.

The architecture and technology that evolved
to answer this demand was client/server, in
the guise of a two-tiered approach. By
replacing the file server with a true database
server, the network could respond to client
requests with just the answer to a query
against a relational DBMS (rather than the
entire file). One benefit to this approach, then,
is to significantly reduce network traffic. Also,
with a real DBMS, true multi-user updating is
now easily available to users on the PC LAN.
By now, the idea of using Windows or Mac
style PC's to front end a shared database
server is familiar and widely implemented.

In a 2-tier client/server architecture, as shown in the figure entitled 2-TIER ARCHITECTURE,
RPC’s or SQL are typically used to communicate between the client and server. The server is
likely to have support for stored procedures and triggers. These mean that the server can be

FILE SERVER
dBASE+

NETWARE
FILE

SERVER

STACKABLE HUB dBASE+ dBASE+ dBASE+
FATTEST OF ALL CLIENTS!

2 TIER ARCHITECTURE
EXECUTABLES ON FAT CLIENTS

DBMS SERVER
&

TP LITE

STACKABLE HUB

Copyright 1996 by George Schussel 6:51 PM 3/10/2005 Page 2

programmed to implement business rules that are better suited to run on the server than the
client, resultingin a much more efficient overall system.

Since 1992 software vendors have developed and brought to market many toolsets to simplify
development of applications for the 2-tier client/server architecture. The best known of these tools
are Microsoft’s Visual Basic, Borland’s Delphi, and Sybase’s PowerBuilder. These modern,
powerful tools combined with literally millions of developers who know how to use them, means
that the 2-tiered client/server approach is a good and economical solution for certain classes of
problems.

The 2-tiered client/server architecture has proven to be very effective in solving workgroup
problems. "Workgroup", as used here, is loosely defined as a dozen to 100 people interacting on
a LAN. For bigger, enterprise-class problems and/or applications that are distributed over a WAN,
use of this 2-tier approach has generated some problems.

Client/Server in Large Enterprise Environments
What typically happens with client/server in large enterprise environments is that the performance
of a 2-tier architecture deteriorates as the number of on-line users increases. The reason for this
is due to the connection process of the DBMS server. The DBMS maintains a thread for each
client connected to the server. Even when no work is being done, the client and server exchange
“keep alive” messages on a continuous basis. If something happens to the connection, the client
must go through a session reinitiating process. With 50 clients and today’s typical PC hardware,
this is no problem. When one has 2,000 clients on a single server, however, the resulting
performance isn’t likely to be satisfactory.

The data language used to implement server procedures in SQL server type data base
management systems is proprietary to each vendor. Oracle, Sybase, Informix and IBM, for
example, have implemented different language extensions for these functions. Proprietary
approachs are fine from a performance point of view, but are a disadvantage for users who wish
to maintain flexibility and choice in which DBMS is used with their applications.

Another problem with the 2-tiered approach is that current implementations provide no flexibility
in “after the fact partitioning”. Once an application is developed it isn’t easy to to move (split)
some of the program functionality from one server to another. This would require manually
regenerating procedural code. In some of the newer 3-tiered approaches to be discussed below,
tools offer the capability to “drag and drop” application code modules onto different computers.

The industry’s response to limitations in the 2-tier architecture has been to add a third, middle
tier, between the input/output device (PC on your desktop) and the DBMS server. This middle
layer can perform a number of different functions - queuing, application execution, database
staging and so forth. The use of client/server technology with such a middle layer has been
shown to offer considerably more performance and flexibility than a 2-tier approach.

Just to illustrate one advantage of a middle layer, if that middle tier can provide queuing, the
synchronous process of the 2-tier approach becomes asynchronous. In other words, the client
can deliver its request to the middle layer, disengage and be assured that a proper response will
be forthcoming at a later time. In addition, the middle layer adds scheduling and prioritization for
the work in process. The use of an architecture with such a middle layer is called “3-tier” or “multi-
tier”. These two terms are largely synonymous in this context.

There’s no free lunch, however, and the price for this added flexibility and performance has been
a development environment that is considerably more difficult to use than the very visually
oriented development of 2-tiered applications.

3-Tier With a TP Monitor

Copyright 1996 by George Schussel 6:51 PM 3/10/2005 Page 3

The most basic type of middle layer (and the oldest, the concept on mainframes dating from the
early 1970’s) is the transaction processing
monitor or TP monitor. You can think of a TP
monitor as a kind of message queuing
service. The client connects to the TP monitor
instead of the database server. The
transaction is accepted by the monitor, which
queues it and then takes responsibility for
managing it to correct completion.

TP monitors first became popular in the
1970’s on mainframes. On-line access to
mainframes was available through one of two
metaphors - time sharing or transaction
processing (OLTP). Time sharing was used
for program development and the computer’s
resources were allocated with a simple

scheduling algorithm like round robin. OLTP scheduling was more sophisticated and priority
driven. TP monitors were almost always used in this environment, and the most popular of these
was IBM’s CICS (pronounced “kicks”).

As client/server applications gained popularity over the early 1990’s, the use of TP monitors
dropped by the wayside. That happened principally because many of the services provided by a
TP monitor were available as part of the DBMS or middleware software provided by vendors like
Sybase, Gupta, and Oracle. Those embedded (in the DBMS) TP services have acquired the
nickname "TP Lite". The “Lite” term comes from experience that DBMS-based transaction
processing works OK as long as a relatively small number (<100) of clients are connected.

TP monitors (TP Heavy) have staged a comeback because their queuing engines provide a
funneling effect, reducing the number of threads a DBMS server needs to maintain. The client
connects with the monitor, which accepts the message and queues it for processing against the
database. Once the monitor has accepted the message, the client can be released for further
processing. The synchronous session based computing of a 2-tier architecture, then, becomes
asynchronous through the insertion of the TP monitor into the equation. The monitor smoothes
out and lowers the overhead of accessing the database server.

Some other key services a monitor provides are: the ability to update multiple different DBMS in a
single transaction; connectivity to a variety of data sources including flat files, non relational
DBMS, and the mainframe; the ability to attach priorities to transactions; and robust security,
including Kerberos. The net result of using a 3-tier client/server architecture with a TP monitor is
that the resulting environment is FAR more scaleable than a 2-tier approach with direct client to
server connection. For really large (e.g., 1,000 user) applications, a TP monitor is one of the most
effective solutions.

As you might expect, however, there is a downside to network-based TP monitors. At this point in
time, the major problem with using this approach is that the code to implement TP monitors is
usually written in a lower level language (like COBOL), and support for TP monitors is not (yet)
widely available in the most popular visual toolsets like PowerBuilder or Visual Basic.

3-Tier With a Messaging Server
Messaging provides still another technology to implement 3-tier computing. It is available today
from companies such as IBM, DEC, Sybase, and Oracle. A messaging server can be thought of
as a kind of “second generation” TP monitor and provides the same funneling process. Messages
are processed asynchronously with the appropriate priority level. And, like a TP monitor, a
messaging server provides connectivity to data sources other than RDBMS.

3 TIER TP MONITOR

TP MONITORDBMS SERVER
& DATA

STACKABLE HUB EXECUTABLES ON FAT CLIENTS

Copyright 1996 by George Schussel 6:51 PM 3/10/2005 Page 4

A message is a self contained object that carries information about what it is, where it needs to
go, and what should happen when it reaches its destination. There are at least two parts to every
message; the header contains priority, and address and an ID number. The body of the message
contains the information being sent, which can be anything including text, images or transactions.

A primary difference from TP Monitors is that a message server architecture is designed around
intelligence in the message itself as opposed to a TP monitor environment which places the
system intelligence in the monitor or the process logic of the application server.

In a TP monitor environment the transactions are simply dumb packets of data. They travel over
a pre-existing and pre-defined connection to the TP Monitor. The TP Monitor interrogates and
processes the transaction, usually submitting the request to a server tier application. If the TP
Monitor doesn't understand the data, it doesn't get processed. Ultimately, the TP Monitor needs
to know as much about the transaction as the server tier does.

Contrasting with this, in a message-based architecture there’s intelligence in the message itself.
The message server just becomes a container of messages and their stored procedures. The
operations performed by the message server on the message are communications related (e.g.
encrypt message over one service and decrypt message sent over another service). For the
most part, messages are treated as discrete objects. The message contains all the information
needed to transverse network services (i.e. network addresses, both logical and physical).
Because the message contains the intelligence, the middle tier of a message-based system is
more flexible than a TP monitor. For one kind of message, the middle tier may simply serve as a
routing point between two kinds of network services. For another kind of message, the middle
tier may execute a stored procedure or business rule as directed by the message. This
abstraction of the middle-tier away from the contents and behavior of the information flowing
through it makes the system more portable to different environments and networks. The
specifics of communicating the information are hidden underneath the messaging service.

Messaging systems are designed for
robustness. By using store and forward logic,
they provide message delivery after and
around failures. They also provide
independence from the enabling technologies
such as wired or wireless or protocols. They
don’t require a persistent connection between
the client and server. They are robust because
message delivery can be programmed to occur
after or around failures. Because messaging
systems support an emerging wireless
infrastructure, they should become popular for
supporting mobile and occasionally connected
workers.

A typical message server architecture would look like the figure entitled MESSAGE BASED
CLIENT/SERVER, which of course, looks just like any of the other 3-tier approaches we’re going
to discuss. The architecture of an application that uses messaging services will turn out to look
similar to an approach that depends on distributed objects and object request brokers (ORB’s) for
communication. If you’re unwilling or unable to wait for the arrival of distributed object
technologies to build your application (widespread popularity probably won’t happen with ORB’s
until the end of the 1990’s), you can construct a reasonable clone using the messaging
approaches that are now available. When distributed objects are a reality, you can migrate your
application if that seems like the best move.

3-Tier With an Application Server

MESSAGE
 SERVER

DBMS
 SERVER

STACKABLE HUB

MESSAGE BASED CLIENT/SERVER

.EXE.EXE.EXE

Copyright 1996 by George Schussel 6:51 PM 3/10/2005 Page 5

When most people talk of 3-tier architectures, they mean the approach of an application server
(illustrated below). With this approach most of the application's business logic is moved from the
PC and into a common, shared host server. The PC is basically used for presentation services -
not unlike the role that a terminal plays on a mainframe. Of course, because we are talking about
a real PC here, it still has the advantages of being used for client side application integration (via
OLE or other approach) if desired.

The application server approach is similar in
overall concept to the X architecture that was
developed at MIT in the 1980’s. In X the goal
is to allow host-based computing with
graphical interfaces on the desktop (I’m using
the term “desktop” here because in the X
architecture, the term “server” refers to the
graphical server which sits on the desktop
and the term “client” refers to where the
application runs - on the shared host). The
similarity between X and a 3-tiered
client/server architecture with an application
server is that both architectures have the goal
of pulling the main body of application logic
off the desktop and running it on a shared
host.

The application server is also similar to a mainframe in that it doesn't need to worry about driving
a GUI, and therefore it’s a shared business logic, computation, and data retrieval engine. This
server normally operates under a 32 bit multitasking OS like NT, OS/2, NetWare or UNIX. As an
option, these OS' all run on symmetric multiprocessing (SMP) configurations. In addition, some
are available on massively parallel hardware. Therefore, the server is very scaleable in terms of
performance. As new versions of the application software are developed and released, the
installation of that software occurs on the one server rather than hundreds or thousands of PC's.

The approach of putting business logic on a server offer a number of important advantages to the
application designer:
• When less software is on the client, there is less worry about security since the important

software is on a server in a more controlled environment.
• The resulting application is more scalable with an application server approach. For one thing

servers are far more scalable than PC’s. While a server could be a single Pentium based
Compaq or Dell, it could also be a symmetric multiprocessing Sequent, with 32 or more
processors. Or, it could be a massively parallel UNIX processor like IBM’s SP2.

• The support and installation costs of maintaining software on a single server is much less
than trying to maintain the same software on hundreds or thousands of PC’s.

• With a middle application server tier it’s much easier to design the application to be DBMS-
agnostic. If you want to switch to another DBMS vendor, it’s more achievable with reasonable
effort with a single multithreaded application than with thousands of applications on PC’s.

• Most new tools for implementing a 3-tier application server approach offer “after the fact”
application partitioning. This means that code and function modules can be reallocated to
new servers after the has been built. This offers important flexibility and performance
benefits. (e.g. This technology is available today in toolsets from Dynasty Technologies and
Forte Software).

The major downside to an application server approach to client/server computing is that the
technology is much more difficult to implement than a 2-tier approach.

3-Tier With an Object DBMS

3 TIER APPLICATIONS

APPLICATION
 SERVER,

BUSINESS &
DATA LOGIC

DBMS SERVER

STACKABLE HUB PRESENTATION LOGIC ON LITE CLIENT

Copyright 1996 by George Schussel 6:51 PM 3/10/2005 Page 6

A variation on this theme of application server is the idea of using an object DBMS (ODBMS) as
the middle layer. This is illustrated in the figure
entitled 3-TIER WITH AN ODBMS. In this
sense, the ODBMS acts as an accelerator or
“hot cache”. Data in a relational DBMS is
usually stored in normalized fashion across
many tables and for access by different
applications and users. This generalized form
of storage may prove inadequate (performance
wise) for the needs of any one particular
application. An ODBMS can be used to retrieve
the data from the common store, assemble it
for efficient usage by your application, and
provide a persistent store for that data as long
as your application might need it. Since
extended data types like video or voice are not

typically supported in today’s RDBMS, those data types might also be stored in the ODBMS,
which could then associate the appropriate multimedia data with the data retrieved from the
RDBMS.

Distributed Components & the 3-Tier Architecture
This brings us to distributed object computing and components. Many software pundits are
predicting a software future with the creation of application systems through assembly of software

components as is illustrated in the ORB
BASED ARCHITECTURE figure. That kind of
software approach is available today in a few
proprietary object environments like NeXT’s
NeXTStep and ParcPlace’s VisualWorks. The
emergence of a broad based industry for
component based software will require the
prior emergence of industry standards for
interchangeable parts. For components to be
assembled like tinker toys, they are going to
have to match up in terms of connectors.
Translated, that means that all vendors who
want to create software components are
going to have to agree on the software object
bus. There are only two real candidates for

such a standard backbone: Microsoft’s OLE and OMG’s (Object Management Group)
implementations on CORBA and OpenDoc. It isn’t the purpose of this article to explore this issue,
but it can be mentioned that not enough of either network OLE or CORBA technology is currently
available for ordinary mortals to build with. By the end of 1997, however, it’s probable that both
will be available and that they may even achieve some level of interoperability.

The distributed object implementation of client/server computing is going to change the way
applications are built. There should be some very interesting advantages to observe. For one, if
we needed fault tolerant computing, we could implement copies of objects onto multiple servers.
That way if any were down, it would be possible to go to another site for service. With distributed
objects being self contained and executable (all data and procedures present) it will be possible
for a systems administrator to tune the performance of the network by moving those objects from
overloaded hardware to underutilized computers. This approach is called tuning through “drag
and drop”, referring to the metaphor the administrator uses on a workstation to move the
components.

A distributed object architecture should also offer other benefits for application developers. For
example, consider the following:

3 TIER WITH AN ODBMS

OBJECT STORE
DBMS SERVER

STACKABLE HUB PRESENTATION LOGIC ON LITE CLIENT

ORB BASED ARCHITECTURE

BUSINESS
LOGIC

OBJECTS

DATABASE
OBJECTS

STACKABLE HUB PRESENTATION OBJECTS
OBJECT

M D

OBJECT

M D

OBJECT

M D

Copyright 1996 by George Schussel 6:51 PM 3/10/2005 Page 7

• The same interface will be used for building a desktop, single location application or a fully
distributed application.

• The application can be developed and tested locally and you’ll know that it will work fine
when it’s distributed - you depend on the known services of an object request broker for
distribution.

• Since the application developer is dealing with an object request broker for transmission
services, technical issues like queuing, timing and protocols aren’t an issue for the
application developer.

Data Warehouse & 3-Tier
A 3-tier architecture is also useful for data mining or warehouse types of applications. These
applications are characterized by unanticipated browsing of historical data. The databases
supporting this type of application can sometimes be huge (up to a few terabytes -10(12) bytes)
and have to be structured properly for adequate performance (a few second turnaround).

Data mining and decision support
applications typically need response times of
a few seconds. If the system can’t provide
that kind of performance, the thought process
of the human analyst is disrupted and the
overall purpose of the system is foiled. A
production database established for multiple
users isn’t typically in a form that can support
ad-hoc inquiries. The approach to support
this browsing is then to make data copies
available for that browsing and to organize
the data in those copies in the best
supporting fashion. This typically means that
the data is denormalized, summarized, and
stored in a multidimensional table - all of

which is very non-relational. IT systems and operations managers usually don’t want access to
those tables to be on the mainframe. Unpredictable performance from ad hoc browsing can have
a nasty impact on production OLTP systems that require predictable response times.

For cost, management, security, and other reasons, it makes sense to load this data copy on its
own server rather that leaving it on the mainframe. Often this server is called OLAP - on-line
analytical processor. In other circumstances this server can be a symmetric or massively parallel
processor running an RDBMS. Since the OLAP server is typically a UNIX or PC-based
technology, the MIPS costs are much lower than the same cycles executed on a mainframe. The
figure entitled 3-TIER WAREHOUSE illustrates this approach. (The graphic for mainframe is a
little different, of course, but the reader has probably noticed that nothing has really changed
architecturally here from any of the other multi-tier approaches already discussed!)

3-Tier and the Future
By now the point is made. Client/server architectures are flexible and modular. They can be
changed, added to, and evolved in numbers of ways. All of the above described 3-tier
approaches could be mixed and matched in various combinatorial sequences to satisfy almost
any computing need. As the Internet becomes a significant factor in computing environments
client/server applications operating over the Internet will become an important new type of
distributed computing. (This is probably an understatement, since the use of Internet and intranet
based applications will very shortly dwarf all of the distributed computing initiatives of the past)

The Internet will extend the reach and power of client/server computing. Through its promise of
widely accepted standards, it will ease and extend client/server computing both intra and inter-

3 TIER WAREHOUSE
.EXE.EXE.EXE

OLAP SERVER
& DATA COPY

FROM
MAINFRAME

STACKABLE HUB

MAINFRAME RUNNING
APPLICATIONS AND

TRANSACTIONS

Copyright 1996 by George Schussel 6:51 PM 3/10/2005 Page 8

company. The movement in programming languages to the technology of distributed objects is
going to happen at light speed - because of the the Internet.

Client/server still remains the only and best architecture for taking advantage of the Internet and
other new technologies that come along. We’ll have to add “changes in client/server computing”
to death and taxes in our inevitable list. But, regardless of what comes, client/server computing is
likely to remain the underpinning for most computing developments we’ll see over the next
decade.

 George Schussel

George Schussel has been a CIO, consultant, industry analyst, writer and lecturer on computer
topics for 30 years. His lectures are held before more than 20,000 professionals a year. He is the
founder and Chairman of Digital Consulting, Inc. (DCI) in Andover, Massachusetts and Chairman
of the Database & Client/Server World trade show. He has published over 50 technical and
analytical articles and his latest book, Rightsizing Information Systems, co-authored with Steve
Guengerich, was published by the SAMS Publishing Division of MacMillan. Reach him at
74407.2472@compuserve.com or http://www.dciexpo.com/.

